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Abstract  

This paper examines sound transmission into two
concentric cylindrical sandwich shells subject to
turbulent flow on the exterior surface of the outer shell.
The interior of the shells is filled with fluid medium and
there is an airgap between the shells in the annular
space.  The description of the pressure field is based on
the cross-spectral density formulation of Corcos,
Maestrello, and Efimtsov models of the turbulent
boundary layer.  The classical thin shell theory and the
first-order shear deformation theory are applied for the
inner and outer shells, respectively.  Modal expansion
and the Galerkin approach are used to obtain closed-form
solutions for the shell displacements and the radiation
and transmission pressures in the cavities including
both the annular space and the interior.  The average
spectral density of the structural responses and the
transmitted interior pressures are expressed explicitly in
terms of the summation of the cross-spectral density of
generalized force induced by the boundary layer
turbulence.  The effects of acoustic and hydrodynamic
coincidences on the spectral density are observed.
Numerical examples are presented to illustrate the
method for both subsonic and supersonic flows.

1 . Introduction

Sound transmission into the interior of aerospace
vehicles such as subsonic and supersonic aircraft and
launch vehicles has received significant attention
recently since the noise levels in these vehicles exceed
acceptable criteria.  Past work has well defined the
dominant noise transmission mechanisms for harmonic
sources exciting this type of structure.  However, much
work remains to understand the dominant mechanism
under boundary layer excitation.  Therefore, there is a
need for a better understanding of the interaction
between temporally & spatially random fluctuating
pressure fields and elastic structures.  A number of
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authors have published analyses of both the vibration
response of elastic plate structures and the subsequent
radiated sound pressure level induced by the turbulent
boundary layer (TBL) pressure fluctuations [3, 5, 6, 8,
9, 16].  Only a few papers have aimed at predicting the
response and consequent noise radiation of isotropic
shell structures subject to the turbulent flow due to the
boundary layer [1, 7, 10, 12].  The authors have studied
sound transmission into cylindrical shells from an
oblique incident plane sound wave for both single and
two concentric cylindrical sandwich shells [13, 14].
Results have revealed that sandwich structures with
honeycomb cores can offer an advantage for noise
reduction over isotropic structures in the high frequency
range and the double sandwich structures can produce an
appreciable increase of transmission loss over single
sandwich structures.

The objective of this paper is to develop an
analytical model for sound transmission into two
concentric cylindrical sandwich shells due to the TBL
pressure fluctuations.   The dynamic model for the
problem under consideration is as follows: (1) the
fluctuating pressures due to the TBL in the external
flow adjacent to the surface of the outer shell cause the
shell to vibrate; (2) these vibrations induce pressure
fluctuations including radiation and transmission
pressures in the annular space; (3) the transmitted
pressures then excite the inner shell to vibrate; and (4)
these vibrations generate noise in the interior cavity
inside the shells.  Based on this analysis, we require
descriptions of the five fields: (1) the external pressure
field acting on the shell wall induced by the TBL; (2)
the vibration of the outer shell; (3) the annual cavity
(airgap) pressure field; (4) the vibration of the inner
shell; and (5) the interior cavity pressure field.  The
outer shell vibrations are assumed not to affect the TBL
pressure field in the external flow and the radiation field
from the outer shell is neglected.

2 . Pressure Fluctuation from the TBL

A schematic of the system configuration is shown
in Fig. 1, i.e., two concentric finite cylindrical shells
with length L and radii R1 and R2.  The outer shell is
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excited by the pressure fluctuations of TBL on its
exterior surface.  Assume that the boundary layer is
fully turbulent and the pressure field over the outer
surface may be characterized as temporally stationary
with spatially homogeneous statistics.  Therefore, the
pressure field may be expressed by a cross-correlation
function that is decaying with spatial and time
separation and is convected with the flow.  The
empirical models [2, 4, 9] for the TBL (Eq. (1)) show
that the correlation function is dependent on the
streamwise separation, ξ =x1≅ x2 and the crossflow
separation, η = R1(θ1≅ θ2), where x and θ denote the
cylindrical coordinates along the longitudinal and
circumferential directions, respectively.  The Fourier
transformation in time gives the spatial-frequency cross-
spectral density (CSD) as Sp

Sp(ξ , η , ω)  =  Φ(ω) A(ξ ,ω) B(η ,ω) e iωξ/Uc (1)

where i = ≅ 1, ω is the frequency, Uc is the convective
velocity of the flow, and Φ is the power spectrum.
Quantities A and B are the spatial correlation functions
corresponding to x and θ and are suggested to take the
exponential decaying forms,

    A  =  exp[-α |ξ |] ,     B  =  exp[-β|η |] (2)

A complete description of the Sp requires the four
quantities, Φ, Uc, α , and β, to be specified.  In the
following, we will define these quantities based on the
Corcos, Maestrello, and Efimtsov models .

2 . 1 Corcos model

Corcos [2] suggested that in a convenient manner,
the functions A  and B as well as the dependence of Uc

on ω were inferred from the experiments of Willmarth
& Wooldridge [15] as exponential forms.  Therefore, the
exponential coefficients α  and β take the following
forms

α   =  α Cω/Uc ,     β  =  β Cω/Uc (3)

where α Cand βC are constant parameters determined by
the experimental results.  The typical range of the
values is α C = 0.11 to 0.12 and βC = 0.7 to 1.2 for a
smooth rigid wall.  Here, we assume α C

 = 0.1 and βC
 =

0.77.

2 . 2 Maestrello model

Only one of Maestrello's models is considered here
in which the flow is assumed semi-frozen and it decays
in space and time at a constant velocity Uc [9].  After
performing a comprehensive set of experimental results
of wind tunnel testing, he defined an ensemble average
of the cross correlation for the pressure fluctuation due
to the TBL in which the effect of the Reynolds number
and the boundary layer thickness was included.  The
Fourier transformation in time of the cross correlation
of the pressure evaluates,

Sp(ξ , η , ω)  =  <p 2> (δ/Ue) e ≅ |ξ|/(αMδ) e ≅ |ξ|/(βMδ)×

eiωξ/Uc Aj
Mexp[≅ Kj

Mωδ/Uc]λ
j=1

4 (4)

where δ is the boundary layer thickness and Ue is the

free stream velocity of the flow; α M = 50/CfRθ and βM

= 0.26, and CfRθ is the equivalent incompressible
Reynolds number; parameters Aj

M and Kj
M are

determined by the experiments and the values for A1
M to

A4
M are 4.4*10≅ 2, 7.5*10≅ 2, ≅ 9.3*10≅ 2, ≅ 2.5*10≅ 2

and for K1
M to K4

M are 5.78*10≅ 2, 2.43*10≅ 1, 1.12,
11.57; the mean square value of the pressure fluctuation
< p2> is related to the square of the wall shear stress τw

2

by a proportional value, i.e., < p2> = 12τw
2 given by

Maestrello and < p2> = 4.8τw
2 given by Willmarth and

Wooldridge [15].  Equation (4) implies that the power
spectrum Φ is

Φ(ω)  =  <p 2> (δ/Ue) Aj
Mexp[≅ Kj

Mωδ/Uc]λ
j=1

4

(5)

and the exponential coefficients α and β are

α   =  1/(α Mδ) ,     β  =  1/(βMδ) (6)

2 . 3 Efimtsov model      

The reliability of the probability characteristics of
wall pressure fluctuations of the TBL is largely
determined by the quantity of reliable statistical data in
the require ranges of Mach numbers, Reynolds numbers,
and Strouhal numbers.  However, under laboratory
condition, it is impossible to cover the all these factors.
Therefore, Efimtsov has performed a series of flight
tests in the range of Mach numbers 0.41≅ 2.1 and
measured the power spectra, spatial correlation, and
convective velocity of the pressure fluctuations on the
surface of an aircraft.  He proposed the following
formula for α and β in Eq. (2) as following [4]

α   =  1/α E ,     β  =  1/βE (7)

where the expressions for α E and βE are

α E  =  δ  (a1Sh)

Uc/uτ

2

 + a2
2

Sh2 + (a2/a3)2

≅ 1/2

(8a)

βE  =  

δ a4
2Sh2

Uc
2/uτ

2
+ a5

2

Sh2+(a5/a6)
2

≅ 1/2

, M<0.75

δ a4
2Sh2

Uc
2/uτ

2
+a7

2
≅ 1/2

 ,              M>0.95

(8b)

where M is the free-stream Mach number.  The average
values of the empirical constants a1 to a7 are 0.1, 72.8,
1.54, 0.77, 548, 13.5, 5.66.  It can be shown that at
high frequencies, these expressions correspond to a
Corcos model with α C = 0.1 and βC = 0.7.
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The convected velocity Uc, generally speaking,
depends on frequency and spatial separations of the
observation points, but the effect of the separation is
neglected in this study.  Two cases for Uc are
considered.  The first one is that Uc is related to the free
stream velocity Ue  by a factor of proportionality and
the factor decreases slightly with frequency varying from
0.6 to 0.8 [12].  It is approximated here by a value
0.65.  The second one is using  an empirical function
for the Ue suggested by Efimtsov [4]

Uc  =  uτa8 Sh 1/5{[1+(a9Sh)2 ]/[1+(a10Sh)4 ]}
1/10

(9)

where parameters a8 to a10 are 9.55, 6.38*10≅ 4,

3.98*10≅ 3 and Sh = ωδ/uτ.  The friction velocity uτ is

related to the Ue and skin-friction coefficient cf, uτ = Ue

 cf/2.  

3 . Governing equations

As shown in Fig. 1, the two concentric shells are
surrounded by fluid media and there is an airgap between
them.  The pressure fluctuations from the TBL excite
the exterior surface of the outer shell.  The mass density
and sound speed for the external, annular, and internal
fluid media are denoted by {ρ0, c0}, {ρ1, c1}, and {ρ2,
c2}, respectively.  Each of the sandwich shells may be
specified as a honeycomb core with face sheets that can
be isotropic, orthotropic, or laminated fiber-reinforced
composite materials.  The inner shell is a thin shell so
that the classical thin shell theory is used.  However,
the outer shell is a thick shell, therefore the effect of the
shear deformation and rotation can not be neglected
especially at high frequencies [13].  The first-order shear
deformation shell theory is applied for vibration of the
outer shell.  The shell motion due to the turbulence is
assumed sufficiently small so that linear theory may be
employed and the pressure fields are also assumed to be
linear.  To develop solutions, we assume that the
radiation pressure does not affect the TBL pressure
loading of the external flow.  Based on the above
descriptions, we can write the governing equations as
follows including the vibration equations for the outer
and inner shells and the acoustic wave equations for the
annular and internal fluids.

The governing equations for an infinite cylindrical
shell in terms of displacement components in the
middle surface along the radial, axial and circumferential
directions have been shown in the paper [13].  These
equations can still be used here since no boundary
conditions were introduced.  The displacement
components along the axial and circumferential
directions are solved for in terms of the displacement
components in the radial direction.  Taking temporal
Fourier transformation, the governing equations become

L1(ω)[w1]  =  p1 ≅ p0,  L2(ω)[w2]  =  p2 ≅ p1 (10)

where w1 and w2 are the radial displacements and L1 and
L2 are frequency dependent differential operators
corresponding to the outer and inner shells, respectively
and p0, p1, and p2 are the acoustic pressures
corresponding to the external, annular, and internal fluid
fields, respectively.  

The total fluctuating pressure in the external fluid
p0 is composed of the random fluctuating pressure  p
induced by the TBL and the radiation pressure p', i.e., p
p0 = p+p'.  The radiation pressure term p' is neglected in
this analysis.  Therefore, p0  p.  With this assumption,
only the linear acoustic wave equations for the annular
and internal fluid need to be considered.  The Fourier
transformations of the wave equations give Helmholz
equations

∇ 2p1 + k1
2p1  =  0,     ∇ 2p2 + k2

2p2  =  0 (11)

where k1
2 = ω2/c1

2, k2
2 = ω2/c2

2, ∇ 2 = ♦ (r ♦ /♦ r)♦ r +
(♦ 2/♦ θ2)/r2 + ♦ 2/♦ x2, and {r, θ, x} represent cylindrical
coordinates along the radial, circumferential, and
longitudinal directions, respectively.

The flexible boundary conditions applied at the
inner surface of the outer shell and the outer surface of
the inner shell relate the pressure p1 to the shell
displacements w1 and the inner wall displacement w2

♦ p1

♦ r r =R1

 = ρ1
sω 2w1,  ♦ p1

♦ r r =R2

 = ρ2
sω 2w2 (12)

where ρ1
s and ρ2

s are the mass densities of the outer and
inner shells, respectively.  At the interior surface of the
inner wall

♦ p2

♦ r 
  =  ρ2

sω 2w2,  at r = R2 (13)

applies.
It is assumed that the shells are simply-supported at

both ends and therefore the boundary conditions are

w1 = w2 = ♦
2w1

♦ x2
 = ♦

2w2

♦ x2
 = 0,  at x = 0, L (14)

The gradients of the pressures p1 and p2 are zero at both
ends

♦ p1

♦ x
  =  ♦ p2

♦ x
  =  0,  at  x = 0, L (15)

in which an assumption is made that the end plates are
acoustically hard.

4 . Closed-form Solution

In order to obtain the solutions, the technique used
here is the modal expansion analysis and Galerkin
approach.  From boundary conditions, Eq. (14), we
assume that the displacement components w1 and w2
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can be expanded in terms of the orthogonal base
functions Xmn

w1  =  λ
m = 1, n = 0

∞
w1mn Xmn(x,θ) (16a)

w2  =  λ
m = 1, n = 0

∞
w2mn Xmn(x,θ) (16b)

where w1mn and w2mn are unknown modal coefficients
and

Xmn  =  sin(mπx/L) cos(nθ) (17)
As will be shown later, the exclusion of the sin(nθ)
functions from the basis functions Xmn does not limit
the generality of the solution.  Then we can expand the
pressure fluctuations of the TBL p as

p  =  λ
m = 1, n = 0

∞
pmn Xmn(x,θ) (18)

where the generalized forces pmn are defined by

pmn  =  εn/(πL)×[
0

L

 
0

2π
p(x,θ,ω)Xmn(x,θ)dxdθ ] (19)

in which εn are the Neumann factors, εn   = 1 for n= 0
and εn = 2 otherwise.

Similarly, the annular acoustic pressure p1 which
satisfies Eq. (11) can be expanded as

p1 = [p11mnJn(σ1mr)+p12mnYn(σ1mr)]Xmnλ
m = 1, n = 0

∞
(20)

where Jn and Yn are the first and second kinds of Bessel

functions of order n, σ1m
2  = k1

2 ≅  mπ /L 2, and p11mn and
p12mn are underdetermined modal coefficients.  In order to
obtain a convergent solution at r = 0, the interior
acoustic pressure p2 which is the solution of Eq. (11)
can be expanded as

p2  =  λ
m = 1, n = 0

∞
p2mn Jn(σ2m r) Xmn(x,θ) (21)

Similarly, σ2n
2  = k2

2 ≅  mπ /L 2 and p2mn are yet-
underdetermined modal coefficients.

Inspection of Eqs. (20) and (21) reveals that the
pressures p1 and p2 do not satisfy the boundary
conditions, Eq. (15).  To meet this need, we expand the
orthogonal functions Xmn,

Xmn  =  λ
j= 0, j≠m

∞
 
εj

π
 m [ 1≅ (≅ 1)m≅ j ]

m 2 ≅  j2
 Yjn(x,θ) (22)

where Yjn are orthogonal base functions of p1 and p2

which satisfy the boundary condition Eqs. (15)

Yjn  =  cos(jπx/L) cos(nθ) (23)

The unknown modal coefficients w1mn, w1mn,
p11mn, p12mn, and p2mn can be obtained by solving the
coupled equations, Eqs. (10), (12), and (13),
simultaneously.  The closed form expressions for these
quantities are given as follows,

{w1mn, w2mn, p11mn, p12mn, p2mn}  =  
          {w1mn, w2mn, p11mn, p12mn, p2mn}pmn

(24)

where

w1mn  =  ≅ i[J12dY11dZ22
SJJ≅ J11dY12dZ22

SJY]/(ω∆) (25a)

w2mn  =  ≅ i J12dY12dZ12
JY/(ω∆) (25b)

p11mn  =   (i ρ1ω/σ1m)Y12dZ22
SJY/∆ (25c)

p12mn  =  ≅ (i ρ1ω/σ1m)J12dZ22
SJJ /∆ (25d)

p2mn  =  ≅ i J12dY12dZ12
JYρ2ω/(σ1mJ22d∆) (25e)

in which

J11 = Jn (σ1mR1),    J11d = Jn
'  (σ1mR1) (26a)

J12 = Jn (σ1mR2),    J12d = Jn
'  (σ1mR2) (26b)

J22 = Jn (σ2mR2),    J22d = Jn
'  (σ2mR2) (26c)

Y11 = Yn(σ1mR1),    Y11d = Yn
' (σ1mR1) (26d)

Y12 = Yn(σ1mR2),    Y12d = Yn
' (σ1mR2) (26e)

and

Z11
SJ  =  Z11

S  ≅  (iωρ1/σ1m) (J11/J11d) (27a)

Z11
SY  =  Z11

S  ≅  (iωρ1/σ1m) (Y11/Y11d) (27b)

Z12
JY  =  (iωρ1/σ1m) (J11/J11d ≅  Y11/Y11d) (27c)

Z22
SJJ=Z22

S ≅ iω[ρ2J22/(σ2mJ22d)+ρ1J12/(σ1mJ12d)] (27d)

Z22
SJY=Z22

S ≅ iω[ρ2J22/(σ2mJ22d)+ρ1Y12/(σ1mY12d)] (27e)

∆  =  J12dY11dZ11
SYZ22

SJJ≅ J12dY11dZ11
SJZ22

SJY (27f)

and Z11
S  and Z22

S  are the modal impedances of the outer
and inner shells, respectively.

5 . Cross-spectral Density

It is necessary to evaluate the modal-spectral
density Spmn of the generalized TBL forcing function
before we discuss the cross-spectral density (CSD) of
the structural response and transmission sound pressure.
The Spmn embodies the correlation function describing
the boundary-layer pressures and is defined in terms of
the normalized-pressure CSD,

Spmn = [εn/(πL)]2

0

L

dx1
0

L

dx2
0

2π
dθ1

0

2π
dθ2Sp[ξ,η,ω]

     sin[mπx1/L] sin[mπx2/L] cos[nθ1] cos[nθ2]
(28)

Substitute Eqs. (1) and (2) into above equation, then
utilize the periodic properties of the integral along
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circumferential direction θ yielding  a closed form for
this integral,

Spmn  =  Re | 4Φ(ω) εn Iξm Iθn (πLR1)≅ 1 (α 'β)≅ 1| (29)

where Re|.| is the real part of the argument,

Iξm  =  {1+[mπ/(α 'L)]2+2[1≅ (≅ 1)me≅ α 'L]×
          (mπ)2(α 'L)≅ 3}×{1+[mπ/(α 'L)]2}

≅ 2
(30a)

Iθn  =  [1≅ (≅ 1)ne≅ βR1π] × { 1+ [n /(βR1)]2}
≅ 1

(30b)

where α  ' = α  + i ω/Uc and α  and β are determined by
Eqs. (3), (6), and (7).  The product of Iξm and Iηn gives
the joint acceptance of the pressure field and the mode
concerned which was introduced in the paper [11].  It
can be shown from Eq. (30a) that under the condition of
the hydrodynamic coincidence, ω = Ucmπ/L, the
denominator becomes very small which results in a
large value for the modal-spectral density function,
Spmn.  When α   = 0.11ω/Uc and β  = 0.6ω/Uc, equation
(29) is reduced to the results derived by Rattayya and
Junger [12].  

Structural vibratory response is of interest because
of its direct application to the analysis of stress and
fatigue life of structures.  Also an increasing concern for
interior noise generated by exterior flows in modern
high-speed transport systems, both on the ground and in
the air, requires a thorough understanding of the
mechanics of this structural acoustics problem.  In the
following we will discuss the normalized average
spectral density (NASD) of the structural response and
the transmitted interior pressure.  Based on the analysis
[12], the modal spectral density of the shell
displacements and the transmitted interior sound
pressure are defined as follows

Sw1mn  =  Φ(ω) |w1mn|
2
 Spmn (31a)

Sw2mn  =  Φ(ω) |w2mn|
2
 Spmn (31b)

Sp2mn  =  Φ(ω) |p2mn|
2
 Spmn (31c)

This equation implies that the mean response is not a
function of circumferential position, and therefore
independent of the coordinate θ selected.  This is
consistent with the selection of only the cos(nθ) basis
functions in Xmn in Eq. (17), where it is assumed the
orthogonal set of sin(nθ) functions would yield identical
results.

The average spectral density of the shell
displacements w1 and w2 and the sound pressure p2 in
the interior over the shell area is independent of the
location observed and boundary conditions at the both
ends.  Therefore, the final forms for the average spectral
density are given as following

{Sw1,Sw2,Sp2} = {Sw1mn,Sw2mn,Sp2mn}/2λ
m = 1, n = 0

∞
(32)

In order to predict the sound transmission characteristics
of the system, we consider the NASD which is defined
by

{Sw1, Sw2, Sp2} = {Sw1, Sw2, Sp2}/Φ(ω) (33)

6 . Results and Discussion

In the numerical analysis, the material properties
and geometry for the shells are the same as those in
paper [14] but with a finite length L = 30m:  The outer
shell consists of titanium face sheets and titanium
honeycomb core and the inner shell consists of four
layer laminated cross-ply graphite/epoxy face sheets and
aluminum honeycomb core.  The fiber orientation for
the inner shell is {900, 00, 900, 00, honeycomb core,
00, 900, 00, 900} with axial direction measured from
the exterior surface of the inner shell.  The radius and
wall thickness are R1 = 1.88m and h1 = 5.079cm for the
outer shell and R2 = 1.84m and h2 = 0.635cm for the
inner shell.  The face sheets are made from the same
material and with the same thickness for each shell.
The thickness ratio of the core and the total for each
shell is 0.84.  The material properties of the face sheet
and the core are given in Table. 1 and 2.  The structural
loss factor is 0.01.  Because there is no experimental
data about TBL pressure for the considered problem, the
data used here are taken from Maestrello's paper [9] for
the free stream velocity Ue, the thickness and
displacement of the boundary layer δ and δ*, the friction
coefficient cf, and the equivalent incompressible

Reynolds number CfRθ.  Two representative cases are
considered: one is subsonic with Mach number M  =
0.67 at sea level (ρ2 = 1.2243kg/m3, c2 = 340.445m/s)
and another is supersonic with Mach number M  = 1.42
at cruising flight altitude with the internal pressure set
to that at 10,000ft (ρ2 = 0.9041kg/m3, c2 =
328.558m/s).  The mass density and sound speed for the
annular fluid medium are the same as those for the
internal fluid medium.  In the numerical analysis, the
interior pressure considered p2 is at  r = R2.

Figure 2 shows the coefficients α  and β defined in
Eqs. (3), (6), and (7) versus frequency for M  = 0.67 and
M = 1.42 among Corcos, Maestrello, and Efimtsov
models.  Both α and β  increase linearly with frequency
in the Corcos model while they are constants in
Maestrello's model.  It can be seen that as the frequency
approaches infinity, α  and β  in the Efimtsov model
will tend towards those in Corcos model.

Figure 3 shows the NASD of the shell
displacements w1 and w2 and the interior pressure p2
defined in Eq. (33) for M  = 0.67.  There are three
phenomena which lead to the peak values in the NASD
so that sound can be transmitted efficiently at these
frequencies.  The first one is the resonance frequencies
of the coupled system at which the peaks in the NASD
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are present among all figures.  The second one is the
acoustic coincidence frequencies (near 4000Hz and
8500Hz) at which the bending wave speed of the inner
shell associated with an infinite plate with the same
material and thickness equals the acoustic wave speed of
the fluid .  Sharp peaks in the NASD of w2 and p2 are
seen at the acoustic coincidences, as shown in Fig. 3(b)
and 3(c).  The last one is the hydrodynamic coincidence
frequencies at which the bending wave speed of the inner
shell equals the convected velocity of the flow.  These
results demonstrate that the response of the outer shell
is affected slightly by the resonance modes and
hydrodynamic coincidences.  However, beside the
influenced of the resonance modes and hydrodynamic
coincidences, the response of the inner shell is strongly
affected by the acoustic coincidences.  The influence of
the resonance modes and the acoustic and hydrodynamic
coincidences on the NASD of p2 is significant.  Noise
can be transmitted very efficiently by the resonant
modes above the hydrodynamic and acoustic
coincidences, as shown in Fig. 3(c).  Comparing three
curves in each of the figures shows that at low
frequency, Maestrello's and Efimtsov's models give
close results.  However, at frequencies greater than 500
Hz, all the models tend to merge into one curve.  The
consistency between the Corcos model and Efimtsov
model is not surprising due to the convergence of the
exponential coefficients α and β of the Efimtsov model
to those of the Corcos model at higher frequencies.  It is
surprising that Maestrello's model tends toward the
other models although the coefficients α  and β are
defined differently, as shown in Fig. 2.  This illustrates
that the NASD is not sensitive to the selection of the
exponential coefficients especially at higher frequencies
in this particular study.  Since there are no significant
differences among the three models, we will present the
results based on the Corcos model in the following
examples.

Figure 4 shows the effect of the Mach number on
the NASD of w1, w2, and p2 for M  = 0.67 and 1.42.
The excitation and the acoustic properties of the fluids
are not the same for the two cases, and therefore the
characteristics of the coupled system are different.  The
different characteristics will result in differences in the
resonances and the acoustic and hydrodynamic
coincidences.  From these figures, one can see that the
hydrodynamic coincidences are not sensitive to this
change and the NASD of w1 increases with an increase
of the Mach number slightly, as seen in Fig. 4a.
However, the effect of the acoustic properties of the
fluids on the acoustic coincidences is obvious and leads
to the peaks being shifted.  A significant effect of the
Mach number on the resonances at which the peak
values of the NASD of p2 are shifted can be observed.
The results illustrate that the effect of the Mach number
on the NASD of the structural response is not obvious
but is significant on the NASD of the interior pressure
level.

  Figure 5 shows the effect of Uc on the NASD of
w1, w2, and p2 for M  = 0.67.  The "formula" in the
figures refers to the empirical function for Uc defined in
Eq. (9).  The selection of Uc only leads to the difference
in the forcing field so that the hydrodynamic
coincidences will be different for the two cases.  These
results illustrate that there is a slight difference at low
frequencies in the prediction for both the shell
displacements and the interior pressure and the
Maestrello and Efimtsov models exhibit even less
sensitivity.  Results also indicate that the hydrodynamic
coincidences are not sensitive to the choice of the
convected velocity of the flow for these particular
parameters.

Figures 6 and 7 show a comparison of the NASD
between the double shells and single shells for M  =
1.42.  In these figures, double refers to the system in
Fig. 1 and outer and inner refer to either a single outer
shell or a single inner shell excited by the boundary
turbulence, respectively.  For structural response, the
double shell system does not offer significant
improvement over a single outer shell.  The increased
response of the "inner" case is due to the reduced weight
implicit in the inner panel construction.  However, for
the interior sound pressure level, the double shell
system provides at least 20dB reduction relative to the
single shell system.  If the total mass of the inner shell
is added to the system of the "outer", the study of this
problem becomes to a comparison between two systems
which have the same weight.  The authors have made an
investigation of this problem in a previous study [13].

7 . Concluding Remarks

An analytical method is presented that predicts the
normalized average spectral density of the response and
the interior noise level of two concentric cylindrical
sandwich shells excited by the TBL pressure
fluctuations.  The simulation of the pressure field due to
the TBL is taken from previously developed methods by
Corcos, Maestrello, and Efimtsov.  Classical thin shell
theory and the first-order shear deformation theory are
applied to the vibration of the inner and outer shells,
respectively.  A modal expansion technique and
Galerkin approach are used to derive closed forms of the
shell displacements and the acoustic pressures.
Parametric studies are carried out for both subsonic and
supersonic flows and for the choices of the convected
velocity.  Results are discussed among these models and
comparisons are made between double and single shells.
The following conclusions can be drawn:  

(1).  The prediction of the normalized average
spectral density levels for the structural responses and
the interior pressure converges at high frequency for the
three TBL models (Corcos, Maestrello, and Efimtsov)
examined.
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(2). The normalized average spectral density of the
interior pressure is affected not only by the
hydrodynamic and acoustic coincidences, but also
strongly by the resonances modes above the
hydrodynamic  and acoustic coincidences at which noise
can be transmitted efficiently.

(3).  The choice of the convective velocity of the
flow does not lead to a significant difference in overall
structural response or the interior pressure.

(4).  The double wall system provides a significant
noise reduction in the interior space over single wall
systems although the structure is not noticeably reduced
compared to the single wall system.
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Table 1.   Material properties of the face sheet
of the sandwich shells.

titanium
mass density:        ρ1

s (kg/m3) 4510
elastic modulus:   E (GPa) 120.02

Poison's ratio:      µ  0.361

graphite/epoxy layer
mass density:        ρ2

s (kg/m3) 1580

elastic modulus: Eα (GPa) 181
elastic modulus: Eβ = Ez  (GPa) 10.3
shear modulus:  Gαβ = Gzα (GPa) 7.17
shear modulus:  Gβz (GPa) 2.87
Poison's ratio:   µβα 0.33
Poison's ratio:   µzα = µzβ 0.28

Table 2.   Equivalent material properties of the
honeycomb core.

titanium honeycomb core
mass density:      ρ1

s
 (kg/m3) 520.77

elastic modulus: Ez = Eθ (GPa) 0.277
elastic modulus: Eζ (GPa) 120.02
shear modulus:  Gzζ =Gθζ (GPa) 2.545
shear modulus:  Gzθ (GPa) 0.069
Poison's ratio:   µzθ 1
Poison's ratio:   µzζ = µθζ 0.361

aluminum honeycomb core
mass density:       ρ2

s (kg/m3) 317.54

elastic modulus: Ez = Eθ (GPa) 0.166
elastic modulus: Eζ (GPa) 72
shear modulus:  Gzζ =Gθζ (GPa) 1.599
shear modulus:  Gzθ (GPa) 0.042
Poison's ratio:    µzθ 1
Poison's ratio:    µzζ = µθζ 0.3

cross section of the shells 

face sheet
core

face sheet
inner shell 

outer shell

airgap

face sheet

face sheet
core

1

y

x

R1
R2

turbulent boundary layer 0

2

L

z

Figure 1. A schematic of the system configuration.   
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Figure 2. The exponential coefficients α and β:  
(a) and (b) for M = 0.67;  
(c) and (d) for M = 1.42.    
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Figure 3. The normalized average spectral density of
the shell displacements w1 and w2 and the
interior pressure p2 for M = 0.67.
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Figure 4. The effect of the Mach number on the
normalized average spectral density of the
shell displacements w1 and w2 and the
interior pressure p2 for Corcos model.
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Figure 5. The effect of the choice of Uc on the
normalized average spectral density of the
shell displacements w1 and w2 and the
interior pressure p2 for M = 0.67 for Corcos
model.
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Figure 6. Comparison of the normalized average
spectral density of the shell  displacement w1
among the double shells, the single outer shell,
and the single inner shell for M = 1.42: (a).
Corcos;  (b). Maestrello;  (c). Efimtsov.
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Figure 7. Comparison of the normalized average
spectral density of the interior pressure p2
among the double shells, the single outer shell,
and the single inner shell for M = 1.42:  (a)
Corcos; (b) Maestrello;  (c) Efimtsov.


